Refine Your Search

Topic

Affiliation

Search Results

Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Journal Article

A Fuel Surrogate Validation Approach Using a JP-8 Fueled Optically Accessible Compression Ignition Engine

2015-04-14
2015-01-0906
An experimental fuel surrogate validation approach is proposed for a compression ignition application, and applied to validate a Jet-A POSF 4658 fuel surrogate. The approach examines the agreement of both physical and chemical properties of surrogate and target fuels during validation within a real compression-ignition engine environment during four sequential but distinct combustion phases. In-cylinder Mie Scattering measurements are applied to evaporating sprays to compare the behavior of the surrogate, its target fuel, and for reference, n-heptane. Early mixture formation and low temperature reaction behavior were investigated using 2-D broadband chemiluminescence imaging, while high temperature ignition and combustion chemistry were studied using OH chemiluminescence imaging. The optical measurements were combined with cylinder pressure-based combustion analysis, including ignition delay and premixed burn duration, to validate the global behavior of the surrogate.
Technical Paper

A Fuzzy On-Line Self-Tuning Control Algorithm for Vehicle Adaptive Cruise Control System with the Simulation of Driver Behavior

2009-04-20
2009-01-1481
Research of Adaptive Cruise Control (ACC) is an important issue of intelligent vehicle (IV). As we all known, a real and experienced driver can control vehicle's speed very well under every traffic environment of ACC working. So a direct and feasible way for establishing ACC controller is to build a human-like longitudinal control algorithm with the simulation of driver behavior of speed control. In this paper, a novel fuzzy self-tuning control algorithm of ACC is established and this controller's parameters can be tuned on-line based on the evaluation indexes that can describe how the driver consider the quality of dynamical characteristic of vehicle longitudinal dynamics. With the advantage of the controller's parameter on-line self-tuning, the computational workload from matching design of ACC controller is also efficiently reduced.
Technical Paper

A Hardware-in-the-Loop Simulator for Vehicle Adaptive Cruise Control Systems by Using xPC Target

2007-08-05
2007-01-3596
A HIL simulator for developing vehicle adaptive cruise control systems is presented in this paper. The xPC target is used to establish real-time simulation environment. The simulator is composed of a virtual vehicle model, real components of an ACC system like ECU, electronic throttle and braking modulator, a user interface to facilitate simulation, and brake and accelerator pedals to make interactive driver inputs easier. The vehicle model is validated against data from field test. Tests of an ACC controller in the real-time are conducted on the simulator.
Technical Paper

A HiL Test Bench for Monocular Vision Sensors and Its Applications in Camera-Only AEBs

2019-04-02
2019-01-0881
This paper presents a HiL test bench specifically designed for closed-loop testing of the monocular-vision based ADAS sensors, whereby the animated pictures of the virtual scene is calibrated and projected onto a 120-degree circular screen, such that the camera sensor installed has the same vision as the observation of the real-world scene. A high-fidelity AEBs model is established and deployed in the real-time target of the HiL system, making intervention decisions based on the instance-level detection information transmitted from the physical sensor. By referring to the 2018 edition of the C-NCAP testing protocol, the HiL tests of the rear-end collision scenarios is performed to investigate the performance and characteristics of the longitudinal-motion sensing of the sensor sample under test.
Technical Paper

A Hybrid Classification of Driver’s Style and Skill Using Fully-Connected Deep Neural Networks

2021-02-03
2020-01-5107
Driving style and skill classification are of great significance in human-oriented advanced driver-assistance system (ADAS) development. In this paper, we propose Fully-Connected Deep Neural Networks (FC-DNN) to classify drivers’ styles and skills with naturalistic driving data. Followed by the data collection and pre-processing, FC-DNN with a series of deep learning optimization algorithms are applied. In the experimental part, the proposed model is validated and compared with other commonly used supervised learning methods including the k-nearest neighbors (KNN), support vector machine (SVM), decision tree (DT), random forest (RF), and multilayer perceptron (MLP). The results show that the proposed model has a higher Macro F1 score than other methods. In addition, we discussed the effect of different time window sizes on experimental results. The results show that the driving information of 1s can improve the final evaluation score of the model.
Technical Paper

A Hybrid Physical and Data-Driven Framework for Improving Tire Force Calculation Accuracy

2023-04-11
2023-01-0750
The accuracy of tire forces directly affects the vehicle dynamics model precision and determines the ability of the model to develop the simulation platform or design the control strategy. In the high slip angle, due to the complex interactions at tire-road interfaces, the forces generated by the tires are high nonlinearity and uncertainty, which pose issues in calculating tire force accurately. This paper presents a hybrid physical and data-driven tire force calculation framework, which can satisfy the high nonlinearity and uncertainty condition, improve the model accuracy and effectively leverage prior knowledge of physical laws. The parameter identification for the physical tire model and the data-based compensation for the unknown errors between the physical tire model and actual tire force data are contained in this framework. First, the parameters in the selected combined-slip Burckhardt tire model are identified by the nonlinear least square method with tire test data.
Technical Paper

A Hybrid System Solution of the Interrupt Latency Compatibility Problem

1999-03-01
1999-01-1099
Microprocessors and microcontrollers are now widely used in automobiles. Microprocessor systems contain sources of interrupt and interrupt service routines, which are software components executed in response to the assertion of an interrupt in hardware. A major problem in designing the software of microprocessor systems is the analytical treatment of interrupt latency. Because multiple interrupt service routines are executed on the same CPU, they compete for the CPU and interfere with each other's latency requirements. Here, interrupt latency is defined as the delay between the assertion of the interrupt in hardware and the start of execution of the associated interrupt service routine. It is estimated that 80% of intermittent bugs in small microprocessor software loads are due to improper treatment of interrupts. Until this work, there is no analytic method for analyzing a particular system to determine if it may violate interrupt latency requirements.
Journal Article

A Lane-Changing Decision-Making Method for Intelligent Vehicle Based on Acceleration Field

2018-04-03
2018-01-0599
Taking full advantage of available traffic environment information, making control decisions, and then planning trajectory systematically under structured roads conditions is a critical part of intelligent vehicle. In this article, a lane-changing decision-making method for intelligent vehicle is proposed based on acceleration field. Firstly, an acceleration field related to relative velocity and relative distance was built based on the analysis of braking process, and acceleration was taken as an indicator of safety evaluation. Then, a lane-changing decision method was set up with acceleration field while considering driver’s habits, traffic efficiency and safety. Furthermore, velocity regulation was also introduced in the lane-changing decision method to make it more flexible.
Journal Article

A Linkage Based Solution Approach for Determining 6 Axis Serial Robotic Travel Path Feasibility

2016-04-05
2016-01-0336
When performing trajectory planning for robotic applications, there are many aspects to consider, such as the reach conditions, joint and end-effector velocities, accelerations and jerk conditions, etc. The reach conditions are dependent on the end-effector orientations and the robot kinematic structure. The reach condition feasibility is the first consideration to be addressed prior to optimizing a solution. The ‘functional’ work space or work window represents a region of feasible reach conditions, and is a sub-set of the work envelope. It is not intuitive to define. Consequently, 2D solution approaches are proposed. The 3D travel paths are decomposed to a 2D representation via radial projections. Forward kinematic representations are employed to define a 2D boundary curve for each desired end effector orientation.
Technical Paper

A Maneuver-Based Threat Assessment Strategy for Collision Avoidance

2018-04-03
2018-01-0598
Advanced driver assistance systems (ADAS) are being developed for more and more complicated application scenarios, which often require more predictive strategies with better understanding of driving environment. Taking traffic vehicles’ maneuvers into account can greatly expand the beforehand time span for danger awareness. This paper presents a maneuver-based strategy to vehicle collision threat assessment. First, a maneuver-based trajectory prediction model (MTPM) is built, in which near-future trajectories of ego vehicle and traffic vehicles are estimated with the combination of vehicle’s maneuvers and kinematic models that correspond to every maneuver. The most probable maneuvers of ego vehicle and each traffic vehicles are modeled and inferred via Hidden Markov Models with mixture of Gaussians outputs (GMHMM). Based on the inferred maneuvers, trajectory sets consisting of vehicles’ position and motion states are predicted by kinematic models.
Technical Paper

A Mathematical Model for Design and Production Verification Planning

1999-05-10
1999-01-1624
The paper focuses on various important decisions of verification and testing plans of the product during its design and production stages. In most of the product and process development projects, decisions on verification and testing are ad-hoc or based on traditions. Such decisions never guarantee the performance of the product as planned, during its whole life cycle. We propose an analytical approach to provide the concrete base for such crucial decisions of verification planning. Accordingly, a mathematical model is presented. Also, a case study of an automotive Electro-mechanical product is included to illustrate the application of the model.
Technical Paper

A Method for Evaluating the Complexity of Autonomous Driving Road Scenes

2024-04-09
2024-01-1979
An autonomous vehicle is a comprehensive intelligent system that includes environment sensing, vehicle localization, path planning and decision-making control, of which environment sensing technology is a prerequisite for realizing autonomous driving. In the early days, vehicles sensed the surrounding environment through sensors such as cameras, radar, and lidar. With the development of 5G technology and the Vehicle-to-everything (V2X), other information from the roadside can also be received by vehicles. Such as traffic jam ahead, construction road occupation, school area, current traffic density, crowd density, etc. Such information can help the autonomous driving system understand the current driving environment more clearly. Vehicles are no longer limited to areas that can be sensed by sensors. Vehicles with different autonomous driving levels have different adaptability to the environment.
Technical Paper

A Method for Vehicle Occupant Height Estimation

2017-03-28
2017-01-1440
Vehicle safety systems may use occupant physiological information, e.g., occupant heights and weights to further enhance occupant safety. Determining occupant physiological information in a vehicle, however, is a challenging problem due to variations in pose, lighting conditions and background complexity. In this paper, a novel occupant height estimation approach is presented. Depth information from a depth camera, e.g., Microsoft Kinect is used. In this 3D approach, first, human body and frontal face views (restricted by the Pitch and Roll values in the pose estimation) based on RGB and depth information are detected. Next, the eye location (2D coordinates) is detected from frontal facial views by Haar-cascade detectors. The eye-location co-ordinates are then transferred into vehicle co-ordinates, and seated occupant eye height is estimated according to similar triangles and fields of view of Kinect.
Technical Paper

A Methodology for Prediction of Periprosthetic Injuries in Occupants with TKR Implants in Vehicle Crashes

2016-04-05
2016-01-1529
Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

A Multi-Zone Model for Diesel Spray Combustion

1999-03-01
1999-01-0916
A quasi-dimensional multi-zone model for diesel spray combustion has been developed. The model contains most of the physical processes of diesel spray combustion, and is simplified and economical. The zone formation is based on the fuel injection parameters. For the wall jet penetration velocity, a new equation is used based on the effect of the impinging free jet on the wall jet. For the fuel evaporation, an approximate solution of the instantaneous variations of droplet diameter is given in the simple algebraic equations based on the individual effect of the evaporation and the heat transfer from ambient gas. The soot emission sub-model calculates the soot concentration. This model has been applied for a direct injection diesel engine. The calculated results have shown a reasonable agreement with the experimental results. A parametric study has been carried out.
Technical Paper

A Multi-mode Control Strategy for EV Based on Typical Situation

2017-03-28
2017-01-0438
A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance. To solve above problems, this paper uses the key technology of mathematical statistics process in MATLAB, such as the mean, linear fitting and discrete algorithms to clean up, screening and classification the original data in general rules, and based on short trips in the segments of kinematics analysis method to establish a representative of quintessential driving cycle.
Journal Article

A New Data-Driven Design Method for Thin-Walled Vehicular Structures Under Crash Loading

2017-03-28
2017-01-1463
A new design methodology based on data mining theory has been proposed and used in the vehicle crashworthiness design. The method allows exploring the big dataset of crash simulations to discover the underlying complicated relationships between response and design variables, and derive design rules based on the structural response to make decisions towards the component design. An S-shaped beam is used as an example to demonstrate the performance of this method. A large amount of simulations are conducted and the results form a big dataset. The dataset is then mined to build a decision tree. Based on the decision tree, the interrelationship among the geometric design variables are revealed, and then the design rules are derived to produce the design cases with good energy absorbing capacity. The accuracy of this method is verified by comparing the data mining model prediction and simulation data.
Journal Article

A New Device for Multi-Axial Tissue Testing: Application to Combined Bending and Shear Loading of the Spine

2009-04-20
2009-01-0249
A multi-axial test device was designed to obtain the material properties of the lumbar spine in combined loading modes. The custom designed tester consists of a rigid platen driven by three DC powered geared motors. Two motors, each connected to parallel linear actuators control the angular displacement (for flexion and extension) and vertical motion (for tension and compression), while a third DC motor connected to a threaded rod was employed to control the horizontal displacement (for anterior and posterior shear) of the rigid platen. The testing machine is driven in displacement-control mode by a feedback system based on data from three rotary potentiometers. Six entire lumbar spine segments (T12-S1) were potted in aluminum cups with DynaCast and tested within failure limits to compression, tension, anterior shear, posterior shear, flexion, extension, anterior shear-flexion, posterior shear-extension and finally in combined anterior shear-flexion loading.
X